The bacterial type VI secretion machine: yet another player for protein transport across membranes.

نویسندگان

  • Alain Filloux
  • Abderrahman Hachani
  • Sophie Bleves
چکیده

Several secretion systems have evolved that are widespread among Gram-negative bacteria. Recently, a new secretion system was recognized, which is named the type VI secretion system (T6SS). The T6SS components are encoded within clusters of genes initially identified as IAHP for IcmF-associated homologous proteins, since they were all found to contain a gene encoding an IcmF-like component. IcmF was previously reported as a component of the type IV secretion system (T4SS). However, with the exception of DotU, other T4SS components are not encoded within T6SS loci. Thus, the T6SS is probably a novel kind of complex multi-component secretion machine, which is often involved in interaction with eukaryotic hosts, be it a pathogenic or a symbiotic relationship. The expression of T6SS genes has been reported to be mostly induced in vivo. Interestingly, expression and assembly of T6SSs are tightly controlled at both the transcriptional and the post-translational level. This may allow a timely control of T6SS assembly and function. Two types of proteins, generically named Hcp and VgrG, are secreted via these systems, but it is not entirely clear whether they are truly secreted effector proteins or are actually components of the T6SS. The precise role and mode of action of the T6SS is still unknown. This review describes current knowledge about the T6SS and summarizes its hallmarks and its differences from other secretion systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin.

Protein secretion is a common property of pathogenic microbes. Gram-negative bacterial pathogens use at least 6 distinct extracellular protein secretion systems to export proteins through their multilayered cell envelope and in some cases into host cells. Among the most widespread is the newly recognized Type VI secretion system (T6SS) which is composed of 15-20 proteins whose biochemical funct...

متن کامل

Correction: Prediction of Type III Secretion Signals in Genomes of Gram-Negative Bacteria

BACKGROUND Pathogenic bacteria infecting both animals as well as plants use various mechanisms to transport virulence factors across their cell membranes and channel these proteins into the infected host cell. The type III secretion system represents such a mechanism. Proteins transported via this pathway ("effector proteins") have to be distinguished from all other proteins that are not export...

متن کامل

Por Secretion System of Porphyromonas gingivalis

The virulence factors of pathogenic bacteria are major secretory proteins that are directly linked to their pathogenicity. These secretory proteins are translocated across the membranes of bacterial cells by translocase nanomachines, which consists of integral membrane proteins. The periodontal pathogen, Porphyromonas gingivalis, secretes trypsin-like proteases(gingipains)either as a large comp...

متن کامل

The type VI secretion system: a tubular story

The molecular mechanism by which proteins are secreted in gram-negative bacteria is supported by nanomachines called type I to type VI secretion systems (T1SS to T6SS). Previous data suggested that the ClpV ATPase energizes the transport of Hcp and VgrG proteins through the T6SS secretion channel. The identification of a yet unknown tubular structure, which interacts with ClpV, adds another lev...

متن کامل

An RTX transporter tethers its unfolded substrate during secretion via a unique N-terminal domain.

Type 1 secretion systems (T1SS) catalyze the one step protein transport across the membranes of Gram-negative bacteria and are composed of an outer membrane protein, a membrane fusion protein and an ABC transporter. The ABC transporter consists of the canonical nucleotide binding and transmembrane domains. For the toxin hemolysin A (HlyA), the ABC transporter HlyB carries an additional, N-termi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology

دوره 154 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2008